
Droidcon MEC Hackathon 2020

oneAPI essentials
FPGA Development with Intel® FPGA Add-on for oneAPI Base Toolkit

Speakers

▪ Benjamin J Odom (INTEL)

▪ Adonay Berhe (INTEL)

2Intel ConfidentialDepartment or Event Name

Agenda

• Agenda:

a) Introduction & Overview to oneAPI

b) Introduction to the Intel® DevCloud

c) Introduction to Jupyter notebooks used for training

d) Introduction to Data Parallel C++

e) Introduction to USM

f) Complex Number multiplication example

• Hands On: Hough Transform using FPGA Add-on for oneAPI

3Intel ConfidentialDepartment or Event Name

Why do we care about Heterogeneous computing?

The term refers to “systems that use more than one kind of processor or cores.” Wikipedia

This gives developers gains in:

✓ Performance

✓ Power consumption

✓ Latency

✓ IO Flexibility

✓ Memory bandwidth

✓ Off-load functionalities

4Intel ConfidentialDepartment or Event Name

XPUs

Programming Challenges
for Multiple Architectures

Growth in specialized workloads

No common programming language or APIs

Inconsistent tool support across platforms

Each platform requires unique software investment

Diverse set of data-centric hardware required

Middleware / Frameworks

Application Workloads Need Diverse Hardware

Language & Libraries

Scalar Vector Matrix Spatial

CPU GPU FPGA Other accel.

5Intel ConfidentialDepartment or Event Name

Introducing
oneAPI
Unified programming model to simplify development
across diverse architectures

Unified and simplified language and libraries for expressing
parallelism

Uncompromised native high-level language performance

Based on industry standards and open specifications

Interoperable with existing HPC programming models

Industry Intel

Initiative Product

Middleware / Frameworks

Application Workloads Need Diverse Hardware

Scalar Vector Matrix Spatial

XPUs

CPU GPU FPGA Other accel.

6Intel ConfidentialDepartment or Event Name

OneAPI Industry Initiative
Alternative to Single-Vendor Solution

A standards based cross-architecture language, DPC++,
based on C++ and SYCL

Powerful APIs designed for acceleration of key
domain-specific functions

Low-level hardware interface to provide a hardware
abstraction layer to vendors

Open standard to promote community and
industry support

Enables code reuse across architectures and vendors

Some capabilities may differ per architecture and custom-tuning will still be required.

API-Based Programming

Libraries

Direct Programming

Data Parallel C++

oneAPI Industry Specification

Low-Level Hardware Interface

XPUs

Middleware / Frameworks

Application Workloads

Math Threading
DPC++
Library

Analytics/
ML DNN ML Comm

Video
Processing

Visit oneapi.com for more details

CPU GPU FPGA Other accel.

oneapi.com

7Intel ConfidentialDepartment or Event Name

Parallelism, productivity and performance for CPUs and Accelerators

Allows code reuse across hardware targets, while permitting custom tuning for a
specific accelerator

Open, cross-industry alternative to single architecture proprietary language

Based on ISO C++ and Khronos SYCL

Delivers C++ productivity benefits, using common and familiar C and C++ constructs

Incorporates SYCL from the Khronos Group to support data parallelism and
heterogeneous programming

Community Project to drive language enhancements

Extensions to simplify data parallel programming

Open and cooperative development for continued evolution

Data Parallel C++
Standards-based, Cross-architecture Language

ISO C++

Khronos SYCL

Direct Programming:
Data Parallel C++

Community Extensions

The open source and Intel beta DPC++ compiler currently supports hardware
including Intel CPUs, GPUs, and FPGAs.
Codeplay announced a DPC++ compiler that targets Nvidia GPUs.

Get functional quickly. Then analyze and tune.

https://www.codeplay.com/portal/02-03-20-codeplay-contribution-to-dpcpp-brings-sycl-support-for-nvidia-gpus

8Intel ConfidentialDepartment or Event Name

What is Data Parallel C++?

Data Parallel C++

= C++ and SYCL* standard and extensions

Based on modern C++

• C++ productivity benefits and familiar constructs

Standards-based, cross-architecture

• Incorporates the SYCL standard for data parallelism and heterogeneous
programming

9Intel ConfidentialDepartment or Event Name

DPC++ Extends SYCL 1.2.1
Enhance Productivity

• Simple things should be simple to express

• Reduce verbosity and programmer burden

Enhance Performance

• Give programmers control over program execution

• Enable hardware-specific features

DPC++: Fast-moving open collaboration feeding into the SYCL* standard

• Open source implementation with goal of upstream LLVM

• DPC++ extensions aim to become core SYCL*, or Khronos* extensions

10Intel ConfidentialDepartment or Event Name

#include <CL/sycl.hpp>

constexpr int N=16;

using namespace sycl;

int main() {

queue q;

int *data = malloc_shared<int>(N, q);

q.parallel_for(range<1>(N), [=](id<1> i) {

data[i] = i;

}).wait();

for (int i=0; i<N; i++) std::cout << data[i] << "\n";

free(data, q);

return 0;

}

A Complete DPC++ Program

Single source

• Host code and heterogeneous
accelerator kernels can be mixed
in same source files

Familiar C++

• Library constructs add
functionality, such as:

Host
code

Accelerator
device code

Host
code

Construct Purpose

queue Work targeting

malloc_shared Data management

parallel_for Parallelism

11Intel ConfidentialDepartment or Event Name

Setup Intel® DevCloud and
Jupyter Environment

12Intel ConfidentialDepartment or Event Name

Intel® DevCloud for oneAPI
Overview

There will still be a need to tune for each architecture.

• A development sandbox to develop, test and
run workloads across a range of Intel CPUs,
GPUs, and FPGAs using Intel® oneAPI beta
software

• A fast way to start coding

• Try the oneAPI toolkits, compilers,
performance libraries, and tools

• Get 120 days of free access to the latest Intel®
hardware and oneAPI software

• No downloads; No hardware acquisition; No
installation

13Intel ConfidentialDepartment or Event Name

Steps

• Sign up for a DevCloud for oneAPI
account here:
https://intelsoftwaresites.secure.f
orce.com/devcloud/oneapi

• Open-up a Jupyter lab notebook

• Common recipes on the DevCloud

https://intelsoftwaresites.secure.force.com/devcloud/oneapi

14Intel ConfidentialDepartment or Event Name

The Buffer Model

Buffers: Encapsulate data in a SYCL
application

• Across both devices and host!

Accessors: Mechanism to access
buffer data

• Create data dependencies in the SYCL
graph that order kernel executions

int main() {
auto R = range<1>{ num };
buffer<int> A{ R }, B{ R };
queue Q;

Q.submit([&](handler& h) {
accessor out(A, h, write_only);

h.parallel_for(R, [=](auto idx) {
out[idx] = idx[0]; }); });

Q.submit([&](handler& h) {
accessor out(A, h, write_only);
h.parallel_for(R, [=](auto idx) {
out[idx] = idx[0]; }); });

…

A

A
B

A

BKernel
1

Kernel
3

Kernel
2

Kernel
4

Buffer

Accessor to
buffer

15Intel ConfidentialDepartment or Event Name

DPC++ code anatomy

Done!
The results are copied to vector `c` at `buf_c` buffer
destruction

Step 1: create a device queue
(developer can specify a device type via
device selector or use default selector)

Step 2: create buffers (represent both host
and device memory)

Step 3: submit a command for
(asynchronous) execution

Step 4: create buffer accessors to access
buffer data on the device

Step 5: send a kernel (lambda) for
execution

Step 6: write a kernel

Kernel invocations
are executed in

parallel

Kernel is invoked
for each element

of the range

Kernel invocation
has access to the

invocation id

void dpcpp_code(int* a, int* b, int* c) {
// Setting up a DPC++ device queue
queue q;
// Setup buffers for input and output vectors
buffer buf_a(a, range<1>(N));
buffer buf_b(b, range<1>(N));
buffer buf_c(c, range<1>(N));
//Submit Command group function object to the queue
q.submit([&](handler &h){
//Create device accessors to buffers allocated in global memory
accessor A(buf_a, h, read_only);
accessor B(buf_b, h, read_only);
accessor C(buf_c, h, write_only);
//Specify the device kernel body as a lambda function
h.parallel_for(range<1>(N), [=](auto i){

C[i] = A[i] + B[i];
});

});
}

16Intel ConfidentialDepartment or Event Name

Transition to Jupyter Notebook –
Complex number multiplication

Welcome.ipynb

Select link DPC++ Program Structure

17Intel ConfidentialDepartment or Event Name

DPC++ = C++ + SYCL* + New Features

DPC++ New Features:

• Unified Shared Memory (USM)

• Sub-Groups

• And more…

Main goals of DPC++ New Features are to simplify programming and
achieve performance by exposing hardware features.

18Intel ConfidentialDepartment or Event Name

queue q;

int *data = malloc_shared<int>(N, q);

for(int i=0;i<N;i++) data[i] = 10;

q.parallel_for(range<1>(N), [=](id<1> idx){

data[idx[0]] += 1;

}).wait();

for(int i=0;i<N;i++) std::cout << data[i] << " ";

free(data, q);

DPC++ Unified Shared Memory

Unified Shared Memory enables the sharing of memory between the host
and device without explicit accessors in the source code

Host can initialize

Device can modify

Host has output

Setup Unified
Shared Memory

19Intel ConfidentialDepartment or Event Name

DPC++ Unified Shared Memory
Unified shared memory provides both explicit and implicit models for
managing memory.

Automatic data accessibility and explicit data movement supported

20Intel ConfidentialDepartment or Event Name

queue q;

int *data = static_cast<int*>(malloc(N * sizeof(int)));

int *data_device = static_cast<int*>(malloc_device(N * sizeof(int), q));

for(int i=0;i<N;i++) {data[i] = 10;}

auto e1 = q.memcpy(data_device, data, sizeof(int)*N);

auto e2 = q.submit([&] (handler &h){

h.depends_on(e1);

h.parallel_for(range<1>(N), [=](id<1> i){

data_device[i] *= 2;

});

});

q.submit([&] (handler &h){

h.depends_on(e2);

h.memcpy(data, data_device, sizeof(int)*N);

}).wait();

for(int i=0;i<N;i++) std::cout << data[i] << " ";

free(data); free(data_device, q);

USM – Explicit DATA TRANSFER

1. malloc_device() will
allocate memory on device,
Host will not have access

2. Copy memory explicitly
from host to device using
q.memcpy()

3. Make any data modification
on device

4. Copy the memory explicitly
from device to host using
q.memcpy()

21Intel ConfidentialDepartment or Event Name

queue q;

int *data = malloc_shared<int>(N, q);

for(int i=0;i<N;i++) data[i] = 10;

q.parallel_for(range<1>(N), [=](id<1> i){

data[i] += 1;

}).wait();

for(int i=0;i<N;i++) std::cout << data[i] << " ";

free(data, q);

USM – Implicit DATA TRANSFER
1. malloc_shared() will

allocate memory that
can move between host
and device. Host and
device will have access

2. Make any data
modification on device

3. Host has access to the
device modified
memory

22Intel ConfidentialDepartment or Event Name

Hough Transform Code Walk-through on
Intel® DevCloud

23Intel ConfidentialDepartment or Event Name

cp
/data/oneapi_workshop/hough_transform_
oneapi_notebooks-master.zip .

unzip hough_transform_oneapi_notebooks-
master.zip

Add Notebooks to Your
Accounts

24Intel ConfidentialDepartment or Event Name

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

Notices & Disclaimers
This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your
Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata
are available on request. No product or component can be absolutely secure. Intel technologies’ features and benefits depend on system configuration and may require
enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright ©, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and OpenVINO are trademarks of Intel Corporation or its subsidiaries in the U.S. and
other countries.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

